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Hard Sets are

Harry Buhrman?®

Abstract

We show that hard sets S for NP must have expo-
nential density, i.e. |S=n| > 2™ for some € > 0 and
infinitely many n, unless coNP C NP/poly and the
polynomazal-time hierarchy collapses. This result holds
for Turing reductions that make n'~¢ gueries.

In addition we study the instance complexity of NP-
hard problems and show that hard sets also have an ex-
ponential amount of instances that have instance com-
plexity n® for some § > 0. This result also holds for
Turing reductions that make n'=¢ queries.

1 Introduction

The density of NP-complete and hard sets was an
early object of study in complexity theory. Assuming
that P is not equal to NP, the real question is how
many instances are indeed hard? In principle it could
be that P # NP only because of a few instances that
are hard to compute, but almost all instances can be
decided by an efficient algorithm. This question was
formalized and investigated in a large body of work
starting with that of Berman and Hartmanis [2], Meyer
and Paterson [10], Fortune [5], Karp and Lipton [8],
Mahaney [9], and many others.

It is problematic for this question to just focus on
a fixed NP-complete set for the following reason. Sup-
pose that P % NP, and suppose there is a machine M
that runs in polynomial time on all but 2% many for-
mulae of length n. We can then solve SAT in random-
ized polynomial time, by simple padding. Given any
formula ¢ we can construct 2™ many different other
formulae ¢; of roughly the same length that are satisfi-
able if and only if ¢ is satisfiable. It is easy to see that
M will with high probability run in polynomial time
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on a randomly chosen ¢;. For this reason the focus
has been on the density of all NP-complete or NP-hard
problems. This simple padding trick cannot work for
an arbitrary NP-complete problem, since the reduction
can map the equivalent formula ¢; back to the origi-
nal ¢. Therefore attention has been on the density of
NP-complete and NP-hard sets under various types of
reductions.

Mahaney [9] showed that if there exists a sparse
many-one hard set for NP then P = NP. A set is
sparse if for every length n it contains no more than
p(n) strings for some polynomial p. This result shows
that many-one hard sets for NP are super-polynomaially
dense unless P = NP. Mahaney’s result has been
extended to weaker notions of reductions, notably by
Ogihara and Watanabe for bounded truth-table reduc-
tions [11]. But it remains an open question to show the
same result for log(n)-truth-table reductions, let alone
for the more general Turing reductions. Karp and Lip-
ton [8] showed that if there exists a sparse Turing hard
set for NP, or equivalently if NP C P/poly, then the
polynomial-time hierarchy collapses to its second level
(X5 = II5). Hence Turing hard sets for NP are also

super-polynomially dense unless the polynomial-time
hierarchy collapses.

In this paper we improve these results from sparse
to subexponential density. Generalizations to sets with
more than polynomial density had been studied before
by Buhrman and Homer [3]. A set S has subexponen-
tial density if for every € > 0, |S=,| < 2" for almost
all n. We show that if there exists an NP-hard set
with subexponential density then coNP C NP /poly and
by a result of Yap [13] it follows that the polynomial-
time hierarchy collapses to its third level (X§ = II%).
Our result holds for Turing reductions that make n'—¢
queries (any € > 0). This shows that NP-hard sets
have exponential density 2" for some € > 0, unless
coNP C NP/poly. This is the best possible result for
NP-hard sets with respect to their density, since simple
padding shows that for every € > 0 there exists an NP-
hard set with density less than 27 . Our results make
use of the proof of a recent combinatorial lemma due
to Fortnow and Santhanam [4].
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precise 1s that of instance complezity due to Orponen
et. al. [12]. The instance complexity of an instance
r with respect to some set A, ic(x : A), is the size
of the smallest (polynomial-time) program p that cor-
rectly decides = and for all other instances either out-
puts no decision or the correct decision. It is easy to
see that ic(z : A) < |z| + O(1). Strings with high
Instance complexity do not have small efficient pro-
grams that decide them. The instance complexity of
NP-complete sets has been studied. The best known
bound [12] is that if every instance of SAT (or any
NP-complete problem) has logarithmic instance com-
plexity, i.e. ic(¢ : SAT) < O(log|¢|) for all ¢, then
P = NP. We show that if SAT has sublinear instance
complexity, that is ic(¢ : SAT) < |¢|' ¢ for all ¢ and
some € > 0, then coNP C NP /poly.

2 Preliminaries

We shall consider decision problems for languages
over the alphabet 2 = {0,1}. The length of a string
r € {0,1}" is denoted |x|; A denotes the empty string.
Given strings z, y, we denote with z -y the concate-
nation of x and y: zy. We represent the pair <z, y>
as the string 10y, where Z denotes x with each of its
characters doubled.

For a set B and number n, B=,, = {z € B | |z| = n}
and B<, = {z € B | || < n}. The cardinality of a
finite set C' is denoted |C/|.

A set S has subexponential density if for every € > 0,
|S—n| < 2™ for all but finitely many n. We write
SUBEXPD for the class of languages with subexpo-
nential density. A set is exponentially dense if it does
not have subexponential density.

An AND-function for a set A is a polynomial-
time computable function g such that for all strings

T1,L2,...,Ty, g(il’i‘l,.’fl:g,...,.ilfn) c A iff z;, € A
for all 2. Similarly, and OR-function ¢ satisfies
g(z1,x9,...,2,) € Aiff 2; € A for some 7. We say

that g has order s if |g(z1,...,2n)] = O((O i |z:])®).
Observe that it g is an AND-function for A, then g is
also an OR-function for A.

3 Reductions

1o introduce the technique we will begin with the
easler case of many-one reductions. This result has

the corollary that if SAT many-one reduces to a set of

subexponential density, then coNP C NP /poly.

Theorem 3.1. Let A be any set that has an AND-
function. If there is a set S with subexponential density

such that A <P S then A € NP/poly.

~—= 1T

Proof. Let g(xy,...,x,) be the AND-function for A.
Let f be the many-one reduction from A to S. We say
that a string z € S is NP-proof for € A, with |z| = n,
ift there exist zy,...,xp, such that for all ¢, |z;| = n
and there exists an ¢, with = z;, and in addition
f(g(:cla < - 1ln)) = <.

The idea is to show that there exists a string z; € S
that is NP-proof for half the strings in A—-,,. We will
then recurse on the remaining strings in A—,,, for which
z1 18 not NP-proof, until we end up with a sequence of
at most n strings z;1,...,2; such that for all z € A_,
there is an ¢ such that z; is NP-proof for z. These NP
proofs serve as advice to show that A € NP/poly.

First observe that if z is NP-proof for precisely ¢
strings x € A then

< "

(3.1)

Assume that f and g both run in time n° for some c.
Let m,, = n*“" , hence | f(g9(z1,...,2,))| < m,. Since S
has subexponential density, for large enough n it holds
that [|[S<m, | < 27.

Let ¢t be the largest such that some 2z; is NP-
proof for t elements of length n in A. Since for
every n-tuple <zi,...,z,> with for all i, z; € A,
flg(<z1,...,2n>)) maps to some string z in S<,_,
we now have:

{<.1231,“.,:En> ITz|mn and }

f(g(mlavwn)) — Z

" S<m.,

> |A=n|" (3.2)

and hence
t"2" > |A=p|” (3.3)

which implies that t > |A-,|/2, and hence z; is NP-
proof for half the elements in A of length n. The proof
now continues by finding a z9 that is NP-proof for half
of the elements in A for which z; is not NP-proof, re-
sulting ultimately in the desired sequence zi,..., z
(K € n). The inductive generation of z; is possible
because all the strings in A for which none of the
21,...,2i—1 18 NP-proof, let’s call them A’  have the
following property. For every vyi,...,y, € A’ it holds
that f(g(y1,---,yn)) € S\ {2z1,...,2;—1}. Hence the

counting arguments in equations (3.1), (3.2), and (3.3)
still hold for A’. ]

Our main technical tool, Lemma 3.2 below, is a gen-
eralization of Theorem 3.1. Instead of a many-one re-
duction to a subexponentially dense set, we consider
a nondeterministic disjunctive reduction to a family of
sets where the density can be exponential.



Definition. Let B = (B,, | n > 0) be a family of sub-
sets of {0, 1}*. We say that A NP-reduces to B if there
is an NPMV function N such that for all n, for all z €
{0,1}™, z € Aiff at least one output of N(z) is in B,,.

Lemma 3.2. Let A have an AND-function of order s
and let o« < 1/s. Let B = (B, | n > 0) be a family
of sets with |B,| < 2™ for sufficiently large n. If A
NP-reduces to B, then A € NP/poly.

Proof. Let M compute the NPMV function for the re-
duction from A to B. Let g be the AND-function for
A. For simplicity we assume that for all zq,..., 2, €
{0,1}™, the length of g(xy,...,z,) is exactly (nm)s.
The general case when the length is O((nm)®) is simi-
lar.

Choose a constant k so that - fl‘“'_l > «s. Fix an input

length m, let n = m*, and let V = (nm)®. Note that
we have

(A+1)scx

”BN” < 2N” — 9m < ka — 91

For any =z € {0, 1}™,

z € A <= thereexist z1,...,2, € {0,1}™

with z; = o for some 7 such that

M on input g(z1,...,z,) outputs

some string z € By.

Call such a string z an NP-proof that z € A. As in
the prootf of Theorem 3.1, we claim that there exists a
collection of at most m strings 21, ..., 2; such that each
r € A—, has an NP-proof in the collection.

Suppose that z is an NP-proof for exactly ¢ strings
in A—,,. Then

"{<.’1}'1, ce ey T > ' Nf(g(f)f]_, . . :$ﬂ)) OUtpU-tS Z}“ < t".

Let ¢ be the maximal such that some string 2z is an
NP-proot for ¢ strings. Then

|[A=m|" < [|Bn| - " < 277,

so t > |A=mn|/2. Therefore there is a string z; that
works for at least half of the strings in A—,,. Repeat-
ing this argument yields a string zo that works for at
least half of the remaining strings. After at most m
repetitions we have NP-proofs for all the strings. [

As our first application of Lemma 3.2 we extend
‘Theorem 3.1 to disjunctive reductions.

Theorem 3.3. If A has an AND-function and A
SUBEXPD, then A € NP /poly.

A

b
d

Proof. Suppose that A <; S € SUBEXPD via a re-
duction ¢ in p(n) time. Define an NPMYV function N
that on input x guesses and outputs one of the queries
in g(z). Let B, = S<pm). Then A NP-reduces to the
family (B, | n > 0) via N.

Let o« < 1/s where s is the order of the AND-
function. We have |B,| < 2* for sufficiently large
n because S has subexponential density. By Lemma
3.2 we have A € NP /poly.

We apply Theorem 3.3 with SAT to obtain the fol-
lowing:

Theorem 3.4. If coNP & NP/poly, then every Sg“
hard set for coNP is exponentially dense.

Allender, Hemachandra, Ogiwara, and Watanabe [1]
showed that if A <} .. -reduces to a sparse set, then
A <j-reduces to another sparse set. Part of the proof
shows that the complement of any sparse set disjunc-
tively reduces to a sparse set. This argument also ap-
plies to subexponentially dense sets. For completeness
we include a proof. Here we write that § has density

d(n) if | S<n| = d(n).

Lemma 3.5. Let S be a set with density d(n). Then
there 1s a set I’ with density at most nd(n) + n such
that S <3 1. In particular, if S € SUBEXPD, then
S <PT for some I’ € SUBEXPD.

Proof. We isolate the part we need of the proof in [1].
Let 1" be the set of all 0"1wb where b is a bit and w has
an extension in S—,,, but wb does not have an extension
in S—,,. If S_,, =0, we add 0™1 to 7.

We claim that a string v is in S—,, if and only if y
has a prefix z such that 0"1z € T..

- Ify & S and S—,, # 0, then let 2 be the longest prefix
of y that has an extension in S. The string 01z is

in'. If S.,, = 0, then 0™1 is in 7', so the claim holds
for z = A.

- It y € .5, then every prefix z of ¥y has an extension in
Sand 0"1z & 1.

Therefore S <g 7' via the reduction that lists the pre-
fixes of its input.

For each length n, we added at most (n+1)||S=,[+1
strings to I". Therefore |T<y| < Z?n;lo(m‘*' | S=m |+
1 < nd(n) +n. ]

Theorem 3.3 and Lemma 3.5 yield the following for
conjunctive reductions.

Theorem 3.6. If A has an OR-function and A <P
SUBEXPD, then A € coNP /poly.



Proof. Suppose that A <P S e SUBEXPD. Then
A <P S and by Lemma 3.5 there is a 7' € SUBEXPD
such that S <® 7. Composing reductions yields
A <P T, so A € NP/poly by Theorem 3.3, because

ol .

the OR-function for A is an AND-function for A

Theorem 3.7. If coNP € NP /poly, then every <P-
hard set for NP s exponentially dense.

Our next theorem concerns query-bounded Turing
reductions. In the proof we use techniques from [1, 6]
to convert the Turing reduction into an NP disjunctive
reduction.

Theorem 3.8. Let A have an AND-function of order

s and let o < 1/s. If A <P.._+ SUBEXPD, then A &
NP /poly.

Proof. Suppose A <.._1 S € SUBEXPD via M. Fix
an input length n. For an input x € {0,1}", consider
using each 2z € {0,1}"" as the sequence of yes/no an-
swers to M’s queries. Each z causes M to produce

~

a sequence of queries wi’",...,w,~ and an accepting
or rejecting decision. (We can assume that M always
makes n® queries.) Let Z, C {0,1}" be the set of
all query answer sequences that cause M to accept z.
Then we have € A if and only if

(3z € Z;)(V1 < j < n®) Sw;®] = z[j],

which is equivalent to

e

; ES®S,

(Fz € Z.)(V1 <5 < n%) 2[j] - w

where S @ S is the disjoint union {0z |z € S} U {1z |
r €S}

By Lemma 3.5 there is a set 1" € SUBEXPD such
that S ‘Scpl T. Let U = TéS. We then have S® S gg U
via some reduction g. For each z € Z,, let

H.T,z — {<7.L]_, . s e 3unt.fr> | (\V’j) 'Uaj E g(Z[j] * w:;:’z)}

Let r(n) be a polynomial bounding the run time of g

on inputs of the form z[j] - w>'*, where |z| = n. Define

J
Bn — {<u13 ooy Uper 2> I (VJ) U5 ~ USr(n)}'

Then we have

r €A < (dze Z,)(dy € Hy )y € B,.

Define an NPMYV tfunction N that on input x chooses
some z € Z, and tuple y € H, . and outputs y. Then
N is an NP-reduction of A to the family (B, | n > 0).

Let § = (1/s — «)/2. Then since U € SUBEXPD,
1 U<rn)ll < 27" for sufficiently large n. This implies

¢

X x -+
| Br| = “Ugr(n)“n < 2"

b _ Qn(l/ﬁ)mé

Lemma 3.2 applies to show A € NP/poly. [

We now have the main result of this paper:

Theorem 3.9. IfcoNP & NP /poly, then for alle > 0,
every <°,.. _p-hard set for NP is exponentially dense.

Proof. Suppose that SAT <P, . _..-reduces to a subex-
ponentially dense set. Then SAT gﬁlm,mT-reduces
to the same set by Inverting the reduction’s answers.
Moreover SAT has an AND-function of order s = 1.

Theorem 3.8 applies to show coNP C NP /poly. [

In fact, we can show a slightly stronger result. The-
orem 3.8 still holds if the Turing reduction uses nonde-
terminism:

Theorem 3.10. Let A have an AND;f-unct*éon of order
s and let « < 1/s. If A € NP>l for some S €
SUBEXPD, then A € NP /poly.

Proof. We extend the proof of Theorem 3.8. Suppose
A = L(M>I""]) where M is an NP machine running in
time t(n). For an input x € {0,1}", we can use any
pair <p,z> where p € {0,1}¥"™) and z € {0,1}" to
run M on input . We use p to provide the nondeter-
ministic choices and 2z to provide the query answers.
In this computation M produces a sequence of queries
wy' %L wpk e and an accepting or rejecting deci-
sion. Let Z; be the set of all <p,z> that cause M to
accept x. Then we have r € A if and only if

(3<p, 2> € Z;)(V1 £ j < n%) S[w;"™7] = 2[j].

The remainder of the proof carries through with z re-
placed by <p,z> throughout. [

We obtain an extension of Theorem 3.10 to strong
nondeterministic polynomial-time reductions.

Theorem 3.11. If coNP & NP/poly, then for all
e > 0, every -gilﬁfﬁ _p-hard set for NP is exponentially
dense.

Proof. Suppose that 5 has subexponential density and
1S Sill\li_,r—-hard for NP. Then SAT <>50F S,

,........,nlmr:. -T
so SAT € NP5 1 Theorem 3.10 implies SAT €
NP /poly. [

All our results to this point are conditional. For an

unconditional result we go to the PH hierarchy, where
P means n®(logn)

Theorem 3.12. For alle > 0, every <P

m?zl’“"‘ﬁ,

_m-hard set
for ¥t is exponentially dense.



Proof. First, we claim that EE) Z NP /poly. This is
similar to Kannan’s proof that X5 does not have n*-
size circuits |7]. We can show that there is a set
H € EE — NP/poly by a direct counting argument.
Then we consider two cases: if coNP & NP/poly, the
claim holds immediately because coNP C Eff Other-
wise coNP C NP/poly and we have PH = £ by Yap’s
theorem [13]. From this padding gives PH = ZI; and
therefore H €& }JI;

There is a many-one complete set A for 25’ with an

AND-function of order 1. Suppose that A <7, , .-
reduces to a set S of subexponential density. Theorem

3.8 implies A € NP /poly, so EI: C NP/poly, a contra-
diction.

We remark that Theorem 3.12 also holds for conjunc-
tive, disjunctive, and SNP n'~¢-Turing reductions.

4 Instance Complexity

Let A be a set and let ¢{(n) be a time bound. A
program p is consistent with A for all z, p(z) € {0,1, 7},
and whenever p(z) # 7, p(x) = A(x). The t-instance
complezity of x with respect to A, written ic*(z : A4) is
the length of a shortest program p such that

- p is consistent with A,

- p(x) halts within £(|x|) steps, and

- p(z) = A(x).

Formally, p(z) = U(p, z) where U is an efficient univer-
sal machine. See [12] for more information on instance
complexity.

Theorem 4.1. Let A have an AND-function of order

s, leta < 1/s, and let q be a polynomaial. Ific?(z : A) <
n® for all but finitely many x € A, then A € NP /poly.

Proof. For each n, let
B, = {p | p is consistent with A and |p| < n®}.

Then |B,| < 2™ *!. Define an NPMV function N
that on input x guesses a program p and outputs p if
the program accepts x within ¢(|z|) steps. Then N
reduces A to the family (B, | n > 0), so Lemma 3.2
yields A € NP /poly. ”

Corollary 4.2. If NP & coNP/poly, then for every
polynomial g and ¢ > 0, there exist infinitely many

¢ € SAT with ic?(¢ : SAT) > || €.

that it P ## NP, then there are infinitely many ¢ with
ici(¢p : SAT) > clog|¢|. With the stronger NP ¢
coNP /poly hypothesis, we get a nearly linear lower
bound on the instance complexity of SAT instances.
Since ict (™ (¢ : SAT) < |p|+0O(1) for t(n) = O(nlogn),
this bound is fairly tight.

We can also show that the lower bound holds for
a large set of SAT instances. Our next theorem is an
extension of Theorem 4.1 that accounts for the density

of the hard instances.

Theorem 4.3. Let A have an AND-function of order
s, let « < 1/s, and let q be a polynomial. Define H =
{z € A | ict(x : A) > |z|*}. If |Hen| € 2 for
suffictently large n, then A € NP /poly.

Proof. Let P, = {p | p is consistent with A and |p| <

n®}. We define B, as the disjoint union of H<, and
P,
B, = OH;S_n U 1F,.

Then |B,| < 2" *2 for large n. Define an NPMV
function N that on input x either

(i) outputs Oz, or

(ii) guesses a program p and outputs 1p if p accepts
x within g(|z|) steps.

Then N reduces A to the family (B, | n > 0) and
Lemma 3.2 implies A € NP/poly. (]

Corollary 4.4. Suppose NP & coNP /poly. Then for
all e > 0 and polynomials q,

|{¢ € SAT<n, |ic?(¢: SAT) > [¢|'~<}| > 2~ ™

for infinitely many n.

Next we consider reductions to sets that have low
instance complexity.

Theorem 4.5. Let A have an AND-function of order

s and let « < 1/s. Let C be a set where for all § > 0,
there is a polynomial r such that ic"(x : C) < |z|°

for all but finitely many x. If A <P, _+ C, then A €

NP /poly.

Proof. Let M compute the reduction from A to C in
t(n) time. Let ¢ = [(1/s) — «]/2. Choose § > 0 so
that ¢(n)° < n¢ for sufficiently large n. There is a
polynomial » such that ic" (z : C) < |z]° for almost all
T

Let z have length n. We can assume that M makes
exactly n® queries on input z. Define an NP machine
N that on input z simulates M. When M makes a
query gq;, IN does the following:



(i) Guess a program p; with |p;| < |q;]°.

(ii) Run p; on input ¢;, aborting the computation if
it runs for more than r(|g;|) steps.

(iii) If p; produces a decision, use that as the answer
for query g; in the simulation of M.

(iv) If p; was aborted or did not output a decision, N
halts and outputs nothing.

It M accepts = at the end of this simulation, then
N outputs the tuple <pi,...,pno> of programs it

guessed.
Each query ¢; has |g;| < t(n). Then for sufficiently
large n,
ic"(g; : C) < |qg|° € t(n)° < ne.
Define

E, = {p| p is consistent with C and |p| < n}
and

Bp = {<p1,...,Pna> | each p; € E, }.

Then |B,| < (27)"" = 27”7 and N reduces A to
the family (B, | n > 0). Lemma 3.2 now applies to
show A € NP /poly. ]

We can also extend Theorem 4.5 to consider the den-
sity of the hard instances.

Theorem 4.6. Let A have an AND-function of order
s and let o < 1/s. Let C be a set where for all § > 0,

there 1s a polynomial r such that the collection of hard
instances

Ho" = {z|ic"(z : C) > n’)

has suberponential density. If A <P.,_ C, then A €
NP /poly.

Proof. Let M compute the reduction from A to C
in ¢{(n) time. We assume that M makes exactly n®
queries. Let € = [(1/s) — «]/2 and choose § > 0 such
that ¢(n)? < n€ for large n. There is a polynomial r
such that H°" has subexponential density.

Let x have length n. Define an NP machine N that
on input x simulates M. When M makes a query ¢;, N
nondeterministically chooses (I) or (II) below to answer
the query:

(I) Guess a bit b and use it as the answer for query
q;- Record z; = <b, ¢;>.

(II) (i) Guess a program p; with [p;| < |g:|°.

(ii) Run p; on input ¢;, aborting the computa-
tion if it runs for more than r(|g;|) steps.

(iii) If p; was aborted or did not output a deci-
sion, /N halts and outputs nothing.

(iv) If p; produces a decision, use that as the
answer for query g;. Record z; = <\, p;>.

If M accepts & at the end of the simulation, then N
outputs the tuple <zi1,..., zpe>.

We have |H i“?( | < 2™ for sufficiently large n. De-
fine )

En = {<A,p>| pis consistent with C and |p| < n¢},

D, = {<l,¢>|q¢€ Hi’:(n) NC}
st( J
U{<0,9> | g € HZ{,,, NC},
and
Bn o {<El, c oy T > I each 2 & Dn UEn}
T'hen

X

L 5:.?" n ?’lf+1 n | n(l/&i)m:‘;
En| + “Hgt(n)”) < (2" THT =2 .

1Ball = (|

We apply Lemma 3.2 to obtain 4 € NP /poly. C

Corollary 4.7. Suppose that NP € coNP /poly and let
C be 5&;1%{“1,-}2,&7"(:3 for NP. There is a § > 0 such that

for every polynomial r, the set

{z|ic"(z:C) > |z|°}
has exponential density.

Just like Theorem 3.11 we can show that Corollary
4.7 also holds for strong nondeterministic polynomial-
time reductions. Also, by following the line of argu-
ment In Theorem 3.12, we can obtain an absolute result

for instance complexity in X%-hard sets.
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